

MICROBE OVERVIEW

PATHOLOGY & CAUSES

 Rare infections of central nervous system (CNS) by ameba, parasites

RISK FACTORS

 Immunosuppression (Acanthamoeba, Toxoplasmosis gondii), immersion in infested water (Naegleria fowleri)

SIGNS & SYMPTOMS

 Fever, headache, seizures, focal neurological signs, mental status change

DIAGNOSIS

LAB RESULTS

 Presence of infectious agent via microscopy, culture, polymerase chain reaction (PCR), presence of specific antibodies

Granulomatous amebic encephalitis

 Brain biopsy: trophozoites in perivascular space and thick walled cysts, PCR/DNA probes may show Acanthamoeba

Primary amoebic meningoencephalitis

- Lumbar puncture
 - CSF microscopy: motile amebae/ fluorescent antibody staining
 - CSF PCR: Naegleria fowleri DNA
 - CSF culture: Naegleria fowleri can be grown on nonnutrient agar coated with Escherichia coli

Toxoplasmosis

- PCR (blood, CSF): Toxoplasma gondii DNA (inactive cysts may evade detection)
- Antibody titres
 - IgG: evidence of current/previous infection
 - IgM: occur in weeks after initial infection
 - Antibody avidity testing: affinity for antigen increases with duration of infection
- Sabin–Feldman dye test: high titers → acute infection
- Tissue biopsy: tachyzoites in tissues/ smears

TREATMENT

MEDICATIONS

• Antifungal, antiparasitic agents

ACANTHAMOEBA

osmosis.org/learn/acanthamoeba

PATHOLOGY & CAUSES

Genus of amebae

- Single-celled eukaryotes
- Environmentally ubiquitous organisms
 - Acanthamoeba spp. isolated from soil, air, fresh water, sewage, seawater, chlorinated swimming pools, domestic tap water, bottled water, hospitals, airconditioning units, contact lens cases
- Life stages
 - Metabolically active trophozoite
 - Dormant stress resistant cyst
- Generally free living bacterivores, can cause human infection (acanthamebiasis)

Granulomatous amoebic encephalitis

- Infection associated with immunosuppression (e.g. diabetes, HIV/AIDS, hematological malignancy, malnutrition, hepatic cirrhosis, chronic renal failure, systemic lupus, chemotherapy)
- Parasite enters body through cuts in skin/ inhalation → hematogenous spread to CNS → invasion of connective tissue \rightarrow inflammatory response \rightarrow neuronal damage

Endosymbiosis, secondary infection

- Several human pathogens infect, replicate within Acanthamoeba
 - Legionella pneumophila, Pseudomonas aeruginosa, some strains of E. coli, Staphylococcus aureus
- ullet Replication inside Acanthamoeba ightarrowenhanced growth in human macrophages, increased antibiotic resistance → more virulent, fulminant infections

SIGNS & SYMPTOMS

• Fever, headache, seizures, focal neurological signs (e.g. cranial nerve palsies), mental status change (e.g.

confusion), sepsis → progressive worsening over weeks/months → death

DIAGNOSIS

DIAGNOSTIC IMAGING

Brain CT/MRI

 Meningeal exudate, pseudotumoral lesions, multiple space-occupying lesions with ring enhancement

LAB RESULTS

Lumbar puncture

- Often contraindicated due to risk of herniation associated with mass lesions
- Analytical findings generally nonspecific
 - Intermediate elevations in white blood cell count, elevated protein, decreased glucose levels
- Giemsa staining, microscopy
 - Trophozoites

Tissue biopsy

- Brain biopsv
 - Trophozoites in perivascular space, thick-walled cysts on light microscopy; PCR/DNA probes may reveal Acanthamoeba
 - Immunocompetent host: granulomatous lesions
 - Severely immunosuppressed host: insufficient CD+ve T-cells to mount granulomatous response → perivascular cuffing with amoebae in necrotic tissue
- If other organs involved (e.g. skin, conjunctiva, lungs)
 - Trophozoites

TREATMENT

MEDICATIONS

- Current treatment regimes uncertain (based on in vitro studies, case reports)
 - Antifungal, antiparasitic agents in combination

 Empiric antifungal regime: miltefosine, fluconazole, pentamidine isethionate
+/- trimethoprim-sulfamethoxazole, metronidazole, macrolide antibiotic

SURGERY

- Single cerebral lesions
 - Surgical resection

NAEGLERIA FOWLERI (PRIMARY AMEBIC MENINGOENCEPHALITIS)

osmosis.org/learn/naegleria_fowleri

PATHOLOGY & CAUSES

 Thermophilic, free-living ameba, found in bodies of warm (stagnant), freshwater

TYPES

- Life cycle, three forms
- 1.Cyst
 - Immotile, dormant, survival phase
 - Smooth, single-layered cell wall with single nucleus, naturally resistant to environmental factors
 - Formation of cysts induced by unfavorable conditions such as food shortage, overcrowding, desiccation, accumulation of waste products, cold temperatures (< 10° celsius)
- 2. Trophozoite (ameboid)
 - Feeding, reproductive, infective phase
 - Transformation into trophozoites occurs around 25° celsius
 - Reproduction occurs via binary fission (single cell divides into two offspring), optimal temperature 42° celsius
- 3.Biflagellate (two flagella)
 - Mobile, infective phase
 - Pear-shaped body with two flagella
 - Flagellate phase occurs when ameba encounters change in fluid ionic

- concentration \rightarrow allows movement to suitable environment
- In human tissues Naegleria fowleri exists as ameboid trophozoite; flagellate form may be found in CSF/during initial nasal insufflation

Primary amoebic meningoencephalitis

- AKA naegleriasis
- Rare infection, fatality rate > 95%
- Mechanism of entry
 - Insufflated into sinuses during water-based activities → attaches to olfactory epithelium → follows olfactory axon through cribiform plate → migration to olfactory bulbs → spread throughout brain → diffuse meningoencephalitis
- In tissues, Naegleria fowleri feeds via two mechanisms; feeding on neurological tissue → necrosis, bleeding
 - Phagocytosis of red, white blood cells
 - Piecemeal consumption of astrocytes, neurons via amoebostome (actin-rich sucking apparatus extended from cell surface)

SIGNS & SYMPTOMS

- Symptoms appear 1–9 days after nasal exposure → death likely follows within two weeks
- Change in sensation of taste, smell; headache, fever, nausea, stiff neck, seizures, coma

DIAGNOSIS

DIAGNOSTIC IMAGING

Brain imaging

- Initially unchanged
 - Reveals associated complications Leptomeningeal enhancement, diffuse subarachnoid hemorrhage, oedema, hydrocephalus, multiple cerebral infarcts

LAB RESULTS

- Lumbar puncture
 - CSF microscopy: motile amebae/ fluorescent antibody staining
 - CSF PCR: Naegleria fowleri DNA
 - CSF culture: Naegleria fowleri can be grown on nonnutrient agar coated with E. coli \rightarrow drop of CSF of infected individual added, incubated at 37° celsius; clearing of E. coli in thin tracks indicative of trophozoite feeding → likely infection

TREATMENT

MEDICATIONS:

- Amphotericin B +/- fluconazole
- Miltefosine

TOXOPLASMA GONDII (TOXOPLASMOSIS)

osmosis.org/learn/toxoplasma_gondii

PATHOLOGY & CAUSES

- Obligate intracellular parasite capable of infecting nearly all warm-blooded animals
 - Only definitive hosts: biological family Felidae (e.g. house cats)
- 30–50% of global population exposed, may be chronically infected

Life cycle

- Sexual reproduction
 - Consumes infected animal meal (e.g. mouse) → parasite survives transit through stomach → infects small intestinal epithelial cells → parasites undergo sexual development, reproduction → millions of thick-walled, zygote-containing, oocytes produced
- Felid shedding
 - Infected epithelial cells rupture →

- release oocytes into intestinal lumen → shedding in feces → spread via soil, water, food
- Oocysts highly resilient; can survive, remain infective for months in cold, dry climates
- Infection of intermediate host
 - Ingestion of oocysts by warm blooded animals (e.g. humans) → oocyst wall dissolved by proteolytic enzymes in stomach, small intestine → frees sporozoites from within oocyst → parasites invade intestinal epithelium, surrounding cells → differentiation into tachyzoites (motile, quickly-multiplying phase)
- Asexual reproduction in intermediate host
 - Tachyzoites replicated inside specialized vacuoles until host cell dies, ruptures → release, hematogenous spread of tachyzoites to all tissues

- Formation of tissue cvsts
 - Host immune response → tachyzoite conversion → bradyzoites (semidormant, slowly dividing stage) → inside host cells known as tissue cysts → can form in any organ; predominantly brain, eyes, striated muscle (including cardiac muscle)
 - Consumption of tissue cysts in meat from infected animal
 - Primary means of infection (e.g. pork, lamb)
 - Tissue cysts maintained in host tissue for remainder of life via periodic cyst rupture, re-encysting

RISK FACTORS

 Consumption of raw/undercooked meat; ingestion of contaminated water, soil/ vegetables; previous blood transfusion/ organ transplant; transplacental transmission

COMPLICATIONS

- Toxoplasmic chorioretinitis
 - AKA ocular toxoplasmosis
 - Common cause of posterior segment infection
 - Majority of cases acquired; also strongly associated with congenital infection

Figure 8.1 A histological section of the cerebrum demonstrating cerebral toxoplasmosis. There are bradyzoites present and a mixed inflammatory infiltrate which includes eosinophils.

SIGNS & SYMPTOMS

- Initial infection (immunocompetent host)
 - Mild flu-like symptoms (e.g. swollen lymph nodes, headache, fever, fatigue, muscle aches, pains)
- Congenital infection
 - Chorioretinitis (unilateral decrease in visual acuity), hydrocephalus, seizures, lymphadenopathy, hepatosplenomegaly
- Chronic/latent infection
 - Asymptomatic in healthy hosts
- Immunocompromised host
 - Active infection (toxoplasmosis)
 - Headache, confusion, poor coordination, seizures, cough, dyspnea
 - Reactivation of latent infection:
 worsening of immunosuppression
 due to progression of underlying
 disease (e.g. HIV/AIDS, iatrogenic
 immunosuppression) → loss of immune
 balance → progression to active
 infection

DIAGNOSIS

DIAGNOSTIC IMAGING

CT scan with contrast

 Multiple 1–3 cm hypodense regions with nodular/ring enhancement predominantly in basal ganglia, corticomedullary junction

T2 weighted MRI

 Iso/hyper-intense lesions surrounded by perilesional edema

Fundoscopy

- Toxoplasmic chorioretinitis
 - Unifocal area of acute-onset inflammation adjacent to old chorioretinal scar

LAB RESULTS

PCR (blood, CSF)

 Toxoplasma gondii DNA (inactive cysts may evade detection)

Antibody titres

IgG (persist for life)

- Evidence of current/previous infection
- IgM (acute infection)
 - Occur in weeks after initial infection, remain detectable for months
 - Antibody avidity testing may clarify nature of infection; early toxoplasmaspecific IgG has low affinity for toxoplasma antigen; affinity increases with duration of infection
- Sabin–Feldman dye test
 - Requires specialised laboratories (live Toxoplasma gondii required); high titers → acute infection
 - Patient serum treated with Toxoplasma trophozoites + complement, incubated → methylene blue added (membrane stain) → if anti-toxoplasma antibodies present, complement facilitates lysis of parasite membrane → no staining of lysed membrane
 - No antibodies in serum → intact membranes → membrane stained blue under microscopy
- Tissue (brain/lymph node/muscle) biopsy
 - Tachyzoites (acute infection) may be demonstrated in tissues/smears

TOXOPLASMA

Figure 8.2 An MRI scan of the head in the axial plane demonstrating cerebral toxoplasmosis. There are numerous peripherally enhancing nodules in the basal ganglia.

TREATMENT

MEDICATIONS

- Prevention
 - Trimethoprim/sulfamethoxazole
- Acute infection
 - Antimalarials: pyrimethamine
 - Antibiotics: sulfadiazine with pyrimethamine, clindamycin, spiramycin
- Latent infection
 - Cysts not sufficiently penetrated by traditional therapy
 - Atovaquone (antimalarial) +/clindamycin (lincomycin antibiotic)
- Toxoplasmic chorioretinitis
 - Sight-threatening lesions
 - Triple therapy: pyrimethamine, sulfadiazine, folinic acid
 - Mono-antibiotic therapy: trimethoprimsulfamethoxazole, clindamycin, spiramycin

