

BACTERIAL VACCINES

VACCINE	TYPE	ROUTE
BCG	Live	Intraderma
Plague	Killed	I/M
Typhoid	Killed	I/M
Cholera	Killed	I/M
<u>Pertussis</u>	Killed	I/M
/leningococcus	Killed	I/M

viruses. Unless you need to edit, it's safer to stay in Protected View.

Enable Editing

Hyperacute Rejection

- 1. Preformed Ab, 2. complement activation,
- 3. neutrophil margination, 4. inflammation,
- 5. Thrombosis formation

Transplantation [Protected View] - PowerPoint

ANIMATIONS SLIDE SHOW

REVIEW VIE

in viruses. Unless you need to edit, it's safer to stay in Protected View.

Enable Editing

Clinical phases of rejection

- 1) Hyperacute rejection
- 2) Accelerated rejection
- 3) Acute rejection
- 4) Chronic rejection

CHRONIC REJECTION IS STILL HARD TO MANAGE

≜ NOTES

COMMENTS

#

From HUZAIFA AKRAM (Roll#101) to Everyone F18-101

Prof Dr Muhammad Zahid Latif Community Medicine / Medic...

Granulomatous lesions

- In chronic diseases: T.B., Leprosy, schistosomiases
- Intracellular organisms resist destruction by macrophage
- Persistent antigen in tissues stimulate local DTH reaction
- Continuous release of cytokines leads to accumulation of macrophages which give rise to epitheloidal and giant cell granuloma

Examples of Type IV Hypersensitivity

- · Contact dermatitis
- · Poison oak/ivy
- · Tuberculin skin test reaction
- · Stevens-Johnson syndrome
- · Erythema multiforme
- Acute graft reaction
- · Graft versus host disease

Examples

- B
- Systemic lupus erythematosus(SLE)
- Rheumatoid arthritis(RA)
- Post-streptococcal glomerulonephritis
- Serum sickness
- · Arthus reaction
- Farmer's lung

Examples of Type II Hypersensitivity

- · ABO transfusion reactions
- Rh incompatibility (erythroblastosis fetalis, hemolytic disease of the new born)
- · Hemolytic anemia
- Neutropenia
- Thrombocytopenia
- Grave's disease
- · Goodpasture's syndrome
- · Rheumatic fever

Anaphylaxis:

- ✓ An antigen specific immune reaction, mediated primarily by IgE
- √ The most severe form of Type I hypersensitivity
- ✓ Severe bronchoconstriction and hypotension
- ✓ Leads to shock
- ✓ Can be life threatening
- ✓ The most common causes of anaphylaxis are peanuts, shellfish, bee venom and penicillin

Click to add title

Two phases of responses to Type I hypersensitivity:

Immediate response	Late phase response
Occurs minutes after repeat exposure to the allergen	2-4 hours after repeat exposure to the allergen
Caused by pre-formed mediators such as histamine, heparin, serotonin, kininogenase, ECF-A, NCF, proteases	Newly synthesized mediators such as Cytokines(IL-1, IL-4, IL-6, TNF-α), Leukotrienes, Prostaglandins, Thromboxanes, PAF
Inhibited by anti-histamines	Inhibited by corticosteroids

Туре	Immune Mediator	Antigen	Mechanism
Type-I: Immediate/ Allergic/ Anaphylactic	IgE (mainly fixed on mast cells or basophils)	Free and foreign (e.g.,Pollens,House dust mites,Mold spores,Animal dander, Penicillins,etc)	Release of mediators from mast cells and basophils
Type-II: Ab-mediated	IgM, IgG Abs against cell surface or tissue Ags	Fixed and intrinsic (e.g. Ag as a part of RBC membrane or neutrophil or platelet or GBM	-Opsonization and phagocytosis of cells -C activation -Fc receptor mediated recruitment & activation of leukocytes
Type-III: Immune complex mediated	Immune complexes of circulating Ags & Abs (IgM and IgG)	Maybe exogenous or endogenous but always free circulating	-C activation -Fc receptor mediated recruitment & activation of leukocytes
Type-IV: T- cell mediated	-CD4+ T cells (Delayed Hypersensitivity) -CD8+ CTL (T-cell mediated lysis)	Exogenous or endogenous	-Macrophage activation, Cytokine mediated inflammation -Direct target cell lysis, Cytokine mediated inflammation

CLINICAL ASPECTS OF COMPLEMENT

(1) Inherited (or acquired) deficiency of some complement components, especially C5–C8, greatly enhances susceptibility to *Neisseria bacteremia and other infections*. A deficiency of MBL also predisposes to severe *Neisseria* infections. A deficiency of C3 leads to severe, recurrent pyogenic sinus and respiratory tract infections.

Click to add title

- Chemotaxis
- C5a and the C5,6,7 complex attract neutrophils
- They migrate especially well toward C5a
- C5a also enhances the adhesiveness of neutrophils to the endothelium

C5 activation complex

- When an additional C3b binds to the C3 activation complex it converts it into a C5 activation complex
- The C5 activation complex cleaves C5 into C5a and C5b
- C5b begins the production of the MAC

Prof Dr Muhammad Zahid Latif Community Medicine / Medic...

- Lysis of cells, such as bacteria, viruses, allografts and tumor cells – the major effector of the <u>humoral</u> branch of the immune system
- Opsonization, which promotes phagocytosis of particulate Ags
- Generation of mediators that participate in inflammation and attract neutrophils
- ➤ Immune clearance, which removes immune complexes from the circulation and deposits them in the spleen and liver

Regulatory functions of T cells

- Antibody production
- · Cell mediated immunity
- Suppression of certain immune responses

13

Leave

Effector functions of T cells

- · Th1--- Delayed hypersensitivity
- · Th2--- Protection against helminths
- Th17--- Protection against bacterial infections
- · CD8 cells--- Protection against viral infections

Mechanisms of action of CD8 T cells

- In some cases, T_C cells:
- Bind to the target cell and release perforin into its membrane
 - In the presence of Ca²⁺ perforin causes cell lysis by creating transmembrane pores
- Other T_C cells induce cell death by:
 - Secreting lymphotoxin, which fragments the target cell's DNA
 - Secreting gamma interferon, which stimulates phagocytosis by macrophages

From Bushra Nasir (Roll No. 32) to Everyone F18-032

Subsets of Helper T cells

- Three main subsets of Th cells:
- i. Th1--- Delayed hypersensitivity with the help of macrophages and gamma interferon
- Th2--- Humoral immunity(secretion of antibodies by plasma cells), role in allergy (protection against helminths through the production of IgE and activation of eosinophils)
- Th17--- Protection against bacterial infections by recruiting neutrophils to the site of infection(tissue inflammation)

Antigen Processing and Presentation through MHC

- · Antigen uptake
- Antigen processing (fragmentation of protein Ag into peptides)
- · MHC biosynthesis
- · Association of peptide with MHC molecule
- Transport to cell surface for expression
- Different cellular pathways for association of peptide with MHC class I and class II molecules

Nucleated cells Class I MHC Class II MHC APCS

Reply

Mark as read

D

> Primary Ab response:

- · Occurs after first encounter with antigen
- · Slow, sluggish &short lived
- · Antibody produced is IgM

> Secondary Ab response:

- Occurs after re-exposure with the same antigen
- Rapid, powerful & prolonged
- · Antibody produced is IgG

Class Switching

 The process by which an individual B cell can link Ig heavy chain C genes to its recombined V genes to produce a different class of antibody with the same specificity

Immunoglobulin Allotypes

- Amino acid sequences within C-region of Ig H and L chains that are different between individuals of the same species
- Importance
 - Monitoring bone marrow grafts
 - Forensic medicine
 - Paternity testing

IgE

- Mediates Immediate Hypersensitivity by release of mediators from mast cells and basophils upon exposure to antigen
- Main host defense against helminth infections by release of enzymes from eosinophils
- Does not fix complement

IgD

- · Found on surface of mature B-cells
- Biological function unknown (thought to function in activation of B-cells)

A From Arooba Javaid (Roll no 19) to Everyone F18-019

IgA

- Main immunoglobulin in secretions i.e. Breast milk, Saliva, tears, mucus
- Secretory IgA prevents attachment of bacteria and viruses to mucous membrane
- Does not fix complement
- Provides passive immunity to infants through mother's breast milk

IgM

2

- Produced in primary response to an antigen
- Fixes complement
- Does not cross the placenta
- Antigen receptor on the surface of B cells

IgG

- Most abundant isotype in serum (80%)
- Crosses the placenta and play an important role in providing passive immunity to the fetus
- · Predominant Ab in secondary response
- Acts as an opsonin—phagocytosis
- Activates complement system
- · Neutralizes bacterial toxins and viruses

Structure of Antibodies

- The stem of the antibody molecule as well as the lower portion of the arms called constant (c) regions
- · There are 5 major types of C regions which correspond to the 5 different classes of antibodies
- All plasma cells in the body are producing one of these classes of antibodies
- A particular plasma cell may switch the particular class of antibody that it is producing in order to fight an infection in a different way

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley

Phases of humoral immune response

Memory cells

D

- Memory cells do not react right away but are held in reserve for later infections
- The secondary response that is carried out by memory cells is different in 3 ways:
 - Memory cells produce antibodies that bind with greater affinity to their antigens than the antibodies produced in the initial response
 - ii. The response time is much quicker than the primary response
 - iii. A greater number of antibodies are produced

Functions of Antibodies

