Objectives

- · At the end of lecture participants would be able to:
- · Discuss system-wise basic fetal development
- · Major anomalies associated with fetal development

CARDIOVASCULAR SYSTEM & FETAL CIRCULATION

- The fetal circulation is characterized by four shunts that ensure that the oxygenated blood from the placenta is delivered to the fetal brain. These shunts are:
- · Umbilical circulation.
- Ductus venosus.
- · Foramen ovale.
- Ductus arteriosus.

UMBILICAL CIRCULATION

- The umbilical circulation carries fetal blood to and from the placenta for gas and nutrient exchange.
- Two umbilical arteries arise from the caudal end of the dorsal fetal aorta and carry deoxygenated blood from the fetus to the placenta.
- Oxygenated blood is returned to the fetus via the umbilical vein to the fetal liver.

- Prostaglandin E2 and prostacyclin, keep ductus arteriosus patent during fetal life.
- Premature closure of the ductus arteriosus has been reported with the administration of cyclooxygenase inhibitors.

TRANSITION TO ADULT CIRCULATION

- At birth, umbilical blood flow ceases causing cessation of flow in the ductus venosus, leading to fall in pressure in the right atrium and closure of the foramen ovale.
- Ventilation of the lungs opens the pulmonary circulation, with a rapid fall in pulmonary vascular resistance, thus increasing the pulmonary circulation. The ductus arteriosus closes functionally within a few days of birth.

- The delay in closure of the ductus arteriosus is most commonly seen in preterm infants (<37 weeks' gestation).
- It results in left to right shunt leading to life threatening fetal hypoxia, congestion in the pulmonary circulation and a reduction in blood flow to the gastrointestinal tract and brain, causing necrotizing enterocolitis & intra ventricular hemorrhage.

CENTRAL NERVOUS SYSTEM

- The CNS appear at the beginning of 3rd week as a plate of thickened ectoderm, the neural plate.
- Its lateral edges elevate to form neural fold, which later on fuses to form neural tube.
- It is open initially from both ends, failure of closure of these opening can cause a major class of neural abnormalities called neural tube defects (NTDs).

- The cephalic end of the neural tube shows three dilatation, the primary brain vesicle
 - Prosencephalon
 - Mesencephalon
 - Rhombencephalon
- · Simultaneously it forms two flexures
 - · Cephalicflexure
 - · Cervical flexure
- There is a rapid increase in total grey matter in the last trimester that
 is mainly due to a fourfold increase in cortical grey matter

A Steps of Early Embryonic Brain Morphogenesis

REPIRATORY SYSTEM

- * The lung first appears as an outgrowth from the primitive foregut.
- By 4–7 weeks epithelial tube branches and vascular connections starts forming
- By 20 weeks the conductive airway and parallel vascular tree is well developed.
- By 26 weeks, Type I and II epithelial cells are beginning to differentiate.
- Pulmonary surfactant, a complex mixture of phospholipids and proteins that reduces surface tension at the air-liquid interface of the alveolus, is produced by the type II cells starting from about 30 weeks

ALIMENTARY SYSTEM

- The primitive gut is present by the end of the fourth week, having been formed by folding of the embryo in both craniocaudal and lateral directions.
- The primitive gut consists of three parts, the foregut, midgut and hindgut, and is suspended by a mesentery through which the blood supply, lymphatics and nerves reach the gut parenchyma.

- The foregut endoderm gives rise to the oesophagus, stomach, proximal half of the duodenum, liver and pancreas.
- The midgut endoderm gives rise to the distal half of the duodenum, jejunum, ileum, caecum, appendix, ascending colon and the transverse colon.
- The hindgut endoderm develops into the descending colon, sigmoid colon and the rectum.

 Between 5 and 6 weeks, due to the rapidly enlarging liver and intestine, the midgut is extruded into the umbilical cord as a physiological hernia.

- While herniated into the umbilical cord, the gut undergoes rotation prior to re-entering the abdominal cavity by
- Failure of the gut to re-enter the abdominal cavity results in the development of an omphalocele (otherwise called an exomphalos) and this condition is associated with chromosomal anomaly

DEVELOPMENTAL DEFECTS

- · Malrotation can result in volvulus and bowel obstruction.
- Atresias exist when there is a segment of bowel in which the lumen is not patent and most commonly occur in the upper gastrointestinal tract (i.e. the oesophagus or duodenum).
- As the fetus continually swallows amniotic fluid, any obstruction that
 prevents fetal swallowing or passage of amniotic fluid along the gut
 will result in the development of polyhydramnios (excess amniotic
 fluid).
- Gastrointestinal fistulae can also occur, the most common being a tracheo-oesophageal fistula.

KIDNEYS & THE URINARY TRACT

- The development of the urinary tract begins with the formation of the nephrogenic cord in week four, along which the pronephros, mesonephros and metanephros form.
- Each pronephric duct grows towards the tail of the embryo, it induces intermediate mesoderm in the thoracolumbar area to become epithelial tubules called mesonephric tubules.
- The pronephros degenerates while the mesonephric (Wolffian) duct extends towards the most caudal end of the embryo, ultimately attaching to the cloaca.

- Failure of the normal migration of the kidney upwards can result in a pelvic kidney.
- Abnormal development of the collecting duct system can result in duplications such as duplex kidneys.
- The most common sites of congenital urinary tract obstructive uropathies are at the pyeloureteric junction, the vesicoureteric junction or as a consequence of posterior urethral valves, an obstructing membrane in the posterior male urethra.

SKIN & HOMEOSTASIS

- The skin and its appendages (nails, hair) develop from the ectodermal and mesodermal germ layers.
- The epidermis develops from the surface ectoderm
- Dermis and the hypodermis, which attaches the dermis of the skin to underlying tissues, both develop from mesenchymal cells in the mesoderm.
- · By the fourth week a single-cell layer of ectoderm surrounds the embryo
- At about 6 weeks this ectodermal layer differentiates into an outer periderm and an inner basal layer.
- · The periderm eventually sloughs as the vernix.

SKIN & HOMEOSTASIS

- The basal layer produces the epidermis and the glands, nails and hair follicles.
- · By 16-20 weeks all layers of the epidermis are developed
- Hair follicles begin to develop as hair buds between 12 and 16 weeks from the basal layer of the epidermis.
- By 24 weeks the hair follicles produce delicate fetal hair called lanugo, first on the head and then on other parts of the body. This lanugo is usually shed before birth.
- · Fetal skin protects and facilitates homeostasis.

ENDOCRINE SYSTEM

- Major components of the hypothalamic-pituitary axis are in place by 12 weeks gestation.
- Thyrotrophin Releasing Hormone (TRH) and Gonadotrophin Releasing Hormone (GnRH) have been identified in the fetal hypothalamus by the end of the first trimester.
- Testosterone produced in the first trimester of pregnancy and increases to 17-21 weeks, which mirrors the differentiation of the male urogenital tract.
- Growth hormone is similarly present from early pregnancy and detectable in the circulation from 12 weeks.
- The thyroid gland produces T4 from 10 to 12 weeks

BLOOD & IMMUNE SYSTEM

- Red blood cells and immune effect cells are derived from pluripotent haematopoietic cells, first noted in the blood islands of the yolk sac.
- By 8 weeks the yolk sac is replaced by the liver as the source of these cells
- By 20 weeks almost all of these cells are produced by the bone marrow.
- At term the ratio of HbF to HbA is 80:20; by 6 months of age, only 1% of haemoglobin is HbF.
- · Abnormal haemoglobin production results in thalassaemia

BEHAVIOURAL STATE

- From conception, the fetus follows a developmental path with milestones that continue into childhood.
- The first activity is the beating of the fetal heart followed by fetal movements at 7–8 weeks.
- By 12 weeks yawning, sucking and swallowing develops.

FOUR FETAL BEHAVIOURAL STATES

- 1F is quiescence-1F is similar to quiet or non-REM sleep in the neonate
- 2F is frequent and periodic gross body movements with eye movements -2F to REM sleep
- 3F no gross body movements but eye movements -3F to quiet wakefulness
- 4F vigorous continual activity again with eye movements- 4F active wakefulness
- An understanding of fetal behaviour can assist in assessing fetal condition and wellbeing.

AMNIOTIC FLUID

- . The amniotic fluid is initially secreted by the amnion,
- By the 10th week it is mainly a transudate of the fetal serum via the skin and umbilical cord.
- From 16 weeks' gestation, the fetal skin becomes impermeable to water and the net increase in amniotic fluid is through a small imbalance between the contributions of fluid through the kidneys and lung fluids and removal by fetal swallowing.
- The amniotic fluid contains growth factors as well as multipotent stem cells

AMNIOTIC FLUID VOLUME

- Amniotic fluid volume increases progressively
- · 10 weeks: 30 ml
- · 20 weeks: 300 ml
- · 30 weeks: 600 ml
- · 38 weeks: 1,000 ml
- · 40 weeks: 800 ml
- · 42 weeks: 350 ml
- · The amniotic fluid index is calculated as the total measurement of the deepest pool in the four quadrants of the uterus.