

Pheochromocytoma

- 10% extraadrenal
- 10% bilateral
- 10%familial
- 10%children
- 10% malignant
- 10% assoc with MEN
- 10% present with a stroke

- <u>Neurological</u>: Headache, Tremors, visual disturbances, Anxiety, panic attacks, seizures.
- <u>Cardiovascular</u>: Hypertension, Palpitations, chest tightness, dyspnea, faints.

- Pheochromocytomas and paragangliomas synthesize and store catecholamines, which include norepinephrine (noradrenaline), epinephrine (adrenaline), and dopamine.
- Elevated plasma and urinary levels of catecholamines and the methylated metabolites, metanephrines.

- MRI (Preferred study): to localise the tumor
- I-MIBG (Meta-iodobenzylguanidine) Single Photon Emission Computerized Tomography
- Identify 90% of primary tumors
- Detects multiple extra-adrenal tumors &
- metastases

- Surgical resection of the mass is the treatment of choice
- Medical treatment: Pre-operatively, for management of hypertensive crises.
- Alpha blockers (Phenoxybenzamine)
- Beta blockers: Propranolol. If arrhythmia or tachycardia occur.

- Malpha-blockers or Calcium channel blockers are used, either alone or in combination for treatment of hypertension.
- Blood pressure is controlled before cardioselective beta-blockers are added for control of tachyarrhythmias

Hyperaldosteronism

Causes of Secondary Hyperaldosteronism

- Increased <u>renin</u> production.
- Conditions like congestive heart failure, liver failure, kidney disease, cirrhosis, and dehydration
- · Certain medicines like diuretics and fludrocortisone.
- Anything that decreases blood flow to the kidneys, lowers blood pressure, or lowers sodium levels.

*Renin - An enzyme secreted by and stored in the kidney area that stimulates aldosterone and therefore, raises blood pressure

Diagnosis of Hyperaldosteronism

- · Elevated aldosterone measured in the blood or urine.
- PRA (Plasma renin activity), is used to distinguish between primary (low PRA) and secondary Hyperaldosteronism (high PRA).
- Abdominal CT scans = adrenal masses
- Electrocardiograms (ECGs) = show abnormalities in heart rhythm that are often associated with low potassium level.

- Medical treatment include a potassium-sparing diuretic, spironolactone, eplerenone, or amiloride.
- Spironolactone is the most effective drug, has antiandrogen activity and men frequently experience breast tenderness, gynecomastia, or reduced libido.
- Eplerenone is favored during pregnancy and for men, since it does not have antiandrogen effects.

Hypertension with Low Plasma Renin?

Conn's Syndrome

- Hypokalemia may present
- · Mereboka Alkabeis

Biowhose

a jak mod ane

- Acromegaly Rare (3 per million per year)
- **Disfiguring**
- Shorten life span (average 10 Years)
- Equally prevalent in both ♂ and ♀
- Average age 44 years at diagnosis
- Delay in diagnosis (8 to 10 years)

Growth Hormone

- More than 95% of patients with acromegaly harbor a GH-secreting pituitary adenoma
- **™**GH release is **intermittent and mainly nocturnal**, especially during <u>REM sleep</u>.
- The frequency and size of GH pulses increase during the growth spurt of adolescence and decline thereafter.
- Mark Acute stress and exercise both stimulate GH release.
- Normal subject, hyperglycaemia suppresses it.

Depends on the age of onset of the GH excess

- In child hood or adolescence prior to epiphyseal fusion gigantism results(extreme tall stature)
- In adult hood or after fusion of the epiphysis enlargement of acral parts or tips of body (nose; lips; hands and feet) in addition soft tissues & internal parts of the body enlarge except brain

Clinical Manifestations

Mass effects of tumor

- ·Headache
- Visual field defects
- Hyperprolactinemia
- Pitutary stalk section

Hypopituitarism

Hypothyroidism

hypogonadism

hypocortisolism

Systemic effects of GH/IGF-I

- Visceromegaly
- Soft tissue and skin changes
- Thickening of acral parts
- Increased skin thickness and soft tissue hypertrophy
- Hyperhidrosis/Oily texture
- Skin tags and acanthosis nigricans

- Impaired glucose tolerance
- · Diabetes mellitus
- · Insulin resistance

- **™**GH levels
- **SOLUTION** IEVELS
- Failure to suppress GH after OGTT (glucose suppresses GH secretion)
- Prolactin levels
- Wisual field examination
- MRI brain with contrast
- **ECG**
- **ECHO**
- ©Glucose levels

Surgical Management

- Well-circumscribed adenomas resected by transsphenoidal surgery.
- Transphenoidal surgery is the appropriate first-line therapy.
- Successful resection alleviates compression effects and preservation of anterior pituitary function.
- Very high preoperative GH and IGF-1 levels are poor prognostic markers of surgical cure.

- Dopamine Agonists
- Somatostatin analogues.
- Growth Hormone Receptor Antagonist.

Dopamine Agonists

- Bromocriptine and cabergoline
- The drug causes minimal tumor shrinkage.
- These side effects include gastrointestinal upset, transient nausea and vomiting, headache, transient postural hypotension with dizziness, nasal stuffiness rarely, cold-induced peripheral vasospasm

Tumor volume 11,193 mm³

Tumor volume 7350 mm³ Reduction = 34%

Tumor volume 5364 mm³ Reduction = 52%

2 Coronal T1 MR images of a patient, illustrating significant tumor volume reduction during treatment with pasireotide

GH receptor antagonist

- Pegvismont
- Injectable treatment
- It does not lower GH levels or reduce tumour size but has been shown to normalize IGF-1 levels in 90% of patients.
- In patients who have persistently elevated IGF-I levels despite maximal therapy with other treatment modalities SR.

Radiation Therapy

- Radiation therapy reserved for third-line treatment.
- Patients who do not have tumor growth control or normalization of hormone levels with surgery (for example, after debulking of a nonresectable tumor) and/or medical therapy are possible candidates for radiation therapy
- Stereotactic(gamma-knife) radiotherapy is used in some as it delivers a more concentrated field of radiation.

Treatment modalities

- 1. Surgery
- 2. Medical therapy
- Dopamine Agonists (Bromocriptine, Cabergoline) shrink tumor size
- Somatastatin Analogue (Octreotide LAR, Lanreotide Autogel) Dec GH and IGF level
- GH receptor Antagonist (Pegvisomant) Dec IGF level
- 3. Radiotherapy (not widely used) Stereotactic Gamma Knife

Clinical features of hypopituitarism

Fatigue, lethargy, generalised weakness

Low mood, poor motivation, difficulty with concentration

Reduced appetite, unexplained weight loss or gain

Dizziness (with hypotension, especially postural)

Male: sexual dysfunction, reduced shaving frequency

Female: Oligo-/amenorrhoea, reduced axillary or pubic hair