Acid Base Balance

Dr M Khurram Jameel
Assistant Professor Surgery
ANMC

- Basic concept
- Respiration
- Oxygenation
- Buffers
- Common disorders of balance

ABGs

Request No: Date: Time:		Units	Arterial Ref Range
BLOOD GASES Temperature pH pCO2 HCO3 (Std) Base Excess pO2 O2 Sat	37.0 7.10L 35 11L -17.4L 169H	Deg. C numHg numo1/L numHg	7.35-7.45 35-45 22.0-30.0 -3.0/3.0 75-100 95-100
Potassium Sodium Chloride iCa++ Glucose Lactate	(Whole Blood) 3.2L 146H 129H 0.89L 7.4 4.9H	nmol/L nmol/L nmol/L nmol/L nmol/L	135-145 95-110 1.12-1.30 3.6-7.7

Acid-Base balance

- · Acids:
- Acid is a substance whose dissociation in water releases hydrogen ions (H+)
- Addition of an acid to a solution, increases concentration of free H+ in the solution.
- Produces more acidic solution & decrease in
 pH

- · Bases:
- A base releases hydroxyl ions (OH) in aqueous solution & decreases its H* concentration by accepting or by binding with free H*.
- This results in increase in pH of the solution.
- · NaOH ----- Na+ OH-
- The OH, accepts H & results in the formation of water.

Maintenance of blood pH

- The normal pH of the blood is maintained in the narrow range of 7.35 - 7.45 (slightly alkaline).
- The body has developed three lines of defense to regulate the body's acid-base balance.

- · Blood buffers
- Respiratory mechanism
- Renal mechanism
- · Blood buffers:
- A buffer may be defined as a solution of a weak acid & its salt with a strong base.

- The buffer resists the change in the pH by the addition of acid or alkali & the buffering capacity is dependent on the absolute concentration of salt & acid.
- The buffer cannot remove H⁺ ions from the body but it temporarily acts as a shock absorbant to reduce free H⁺ ions.

Blood contains three buffer systems

- Bicarbonate buffer
- Phosphate buffer
- · Protein buffer
- Bicarbonate buffer system:
- Sadium bicarbonate & carbonic acid (NaHCO,
 H,CO,) is the most predominant buffer system
 - of ECF (plasma).

 Carbonic acid dissociates into hydrogen and bicarbonate ions.

* By the law of mass action

* Ka-Dissociation constant of H,CO,

Phosphate buffer system

- Sodium dihydrogen phosphate and disodium hydrogen phosphate (NaH,PO; Na,HPO,) constitute the phosphate buffer
- It is mostly an Intracellular buffer.

Protein buffer system

- The plasma proteins & hemoglobin, constitute
 the protein buffer.
- The buffering capacity of proteins is dependent on the pK of ionizable groups of amino acids.
- The imidazole group of histidine (pK-4.7) is the most effective contributor of protein buffer.

Respiratory Buffer Systems

- · CO2 is produced by cellular respiration.
- CO₂ is converted to bicarbonate by carbonic anhydrase.
- respiring tissues.
- CO2 is exhaled in lungs.

Respiratory mechanism for pH regulation

- Respiratory system provides a rapid
 mechanism for the maintenance of acid-base
 balance.
- This is achieved by regulating the concentration of carbonic acid (H,CO,) in the blood.

- The large volumes of CO, produced by the cellular metabolic activity endanger the acidbase equilibrium of the body.
- All of this CO, is eliminated from the body in the expired air via the lungs

H,CO, Carbonic anhydrase CO, + H,O

- The rate of respiration is controlled by a respiratory centre, located in the medulla of the brain
- This centre is highly sensitive to changes in the pH of blood.
- Decrease in blood pH causes hyperventilation
 to blow off co, & reducing the H,CO,
 concentration.

- H' ions are eliminated as H₁O
- Respiratory control of blood pH is rapid but only a short term regulatory process, since hyperventilation cannot proceed for long.

Renal Buffer System

Disorders of acid-base balance

- The acid-base disorders are mainly two types
- · Acidosis-a decline in blood pH.
- Metabolic acidosis-due to a decrease in bicarbonate
- Respiratory acidosis-Due to an increase in carbonic acid.

- Alkalosis-a rise in blood pH.
- Metabolic alkalosis-due to an increase in bicarbonate.
- Respiratory alkalosis-due to a decrease in carbonic acid.

ARTERIAL BLOOD GAS INTERPRETATION

PLOOD GAS INTERPRETATION

OPTION #1) TIC-TAC-TOE METHOD	- live up your	Cline up your "board" like this	
Variables Acidosis PH <7.35			
(REAPTICATORY) PacO2 1 45	75-45	175	
(METABOLIC) HCO, -22	22-26	*26	
have, the more acidohe you will be	PLOS BASE	the More bicarlo you have, the more alkalotic you will be	

this is a great option beginners!

- STEP #1) For each variable (pH, pCO2 or HCO,-), circle if the value is ACIDOTIC or ALKALOTIC (or Normal).
- 9789 #2) Whichever column has the most circles indicates if the ABG 14 ACIDOTIC or ALKALOTIC.
- 978P #3) To determine whether the ABC to due to a REAPTRATORY or METABOLIC indicatance, look on which variable (p(0, or H(0,)) is also circled in the same column as your pt.

Causes of acid-base disorders

- Metabolic acidosis:
- . Occur due to DM (ketoacidosis).
- · Lactic acidosis & renal failure.
- Respiratory acidosis:
- · Severe asthama
- Cardiac arrest

- Metabolic alkalosis:
- Vomiting
- Hypokalemia
- * Respiratory alkalosis- due to
- Hyperventilation
- * Severe anemia

Metabolic acidosis

- Reduction in bicarbonate leads to fall in blood
 pH.
- This is due to excessive production of organic acids which can combine with NaHCO3 and deplete the alkali reserve
- NaHCO, + Organic acid Na salts of organic acids + CO,
- · Commonly seen in DM.

Respiratory acidosis

- The primary defect is due to a retention of CO,
 (Increased H,CO,)
- Causes for respiratory acidosis are depression of respiratory centre. pulmonary disorders & breathing air with high content of CO;

Metabolic alkalosis

- * This is due to increase in HCO; concentration
- Occur due to excessive vomiting or an excessive intake of sodium bicarbonate for therapeutic purposes.
- Respiratory mechanism initiates
 compensation by hypoventilation to retain
 co, this is taken over by renal mechanism
 which excrete more HCO; and retain H*

Respiratory alkalosis

- This is due to decrease in H,CO, concentration.
- This is due to prolonged hyperventilation resulting in increased exhalation of CO, by
 the lungs
- Renal mechanism tries to compensate by increasing the urinary excretion of HCO;